Flux measurements and maintenance energy for carbon dioxide utilization by Methanococcus maripaludis
نویسندگان
چکیده
BACKGROUND The rapidly growing mesophilic methanogen Methanococcus maripaludis S2 has a unique ability to consume both CO2 and N2, the main components of a flue gas, and produce methane with H2 as the electron donor. The existing literature lacks experimental measurements of CO2 and H2 uptake rates and CH4 production rates on M. maripaludis. Furthermore, it lacks estimates of maintenance energies for use with genome-scale models. In this paper, we performed batch culture experiments on M. maripaludis S2 using CO2 as the sole carbon substrate to quantify three key extracellular fluxes (CO2, H2, and CH4) along with specific growth rates. For precise computation of these fluxes from experimental measurements, we developed a systematic process simulation approach. Then, using an existing genome-scale model, we proposed an optimization procedure to estimate maintenance energy parameters: growth associated maintenance (GAM) and non-growth associated maintenance (NGAM). RESULTS The measured extracellular fluxes for M. maripaludis showed excellent agreement with in silico predictions from a validated genome-scale model (iMM518) for NGAM = 7.836 mmol/gDCW/h and GAM = 27.14 mmol/gDCW. M. maripaludis achieved a CO2 to CH4 conversion yield of 70-95 % and a growth yield of 3.549 ± 0.149 g DCW/mol CH4 during the exponential phase. The ATP gain of 0.35 molATP/molCH4 for M. maripaludis, computed using NGAM, is in the acceptable range of 0.3-0.7 mol ATP/molCH4 reported for methanogens. Interestingly, the uptake distribution of amino acids, quantified using iMM518, confirmed alanine to be the most preferred amino acids for growth and methanogenesis. CONCLUSIONS This is the first study to report experimental gas consumption and production rates for the growth of M. maripaludis on CO2 and H2 in minimal media. A systematic process simulation and optimization procedure was successfully developed to precisely quantify extracellular fluxes along with cell growth and maintenance energy parameters. Our growth yields, ATP gain, and energy parameters fall within acceptable ranges known in the literature for hydrogenotrophic methanogens.
منابع مشابه
Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis.
Methanococcus maripaludis is a mesophilic species of Archaea capable of producing methane from two substrates: hydrogen plus carbon dioxide and formate. To study the latter, we identified the formate dehydrogenase genes of M. maripaludis and found that the genome contains two gene clusters important for formate utilization. Phylogenetic analysis suggested that the two formate dehydrogenase gene...
متن کاملMetabolic processes of Methanococcus maripaludis and potential applications
Methanococcus maripaludis is a rapidly growing, fully sequenced, genetically tractable model organism among hydrogenotrophic methanogens. It has the ability to convert CO2 and H2 into a useful cleaner energy fuel (CH4). In fact, this conversion enhances in the presence of free nitrogen as the sole nitrogen source due to prolonged cell growth. Given the global importance of GHG emissions and cli...
متن کاملExergy and Energy Analysis of Effective Utilization of Carbon Dioxide in the Gas-to-Methanol Process
Two process models are used to convert carbon dioxide into methanol. These processes have been extended and improved using Aspen Plus simulator software. Both processes are found in the CO2 correction system. In this machine, the desired synthesis gas is produced in a flexible configuration. At the same time, the conversion of CO2 to hydrogen via a copper-based catalyst ha...
متن کاملHydrogenases of Methanococcus maripaludis
The methanogens catalyze a major component of the Earth’s H2 cycle. They are especially active in anaerobic environments where they are the primary consumers of fermentatively produced H2. These strictly anaerobic Archaea have evolved unique adaptations to H2 metabolism, many of which are poorly understood. Our research examines the enzymes and pathways in H2 metabolism in methanogens, especial...
متن کاملDisruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis.
Methanococcus maripaludis is a mesophilic archaeon that reduces CO2 to methane with H2 or formate as an energy source. It contains two membrane-bound energy-conserving hydrogenases, Eha and Ehb. To determine the role of Ehb, a deletion in the ehb operon was constructed to yield the mutant, strain S40. Growth of S40 was severely impaired in minimal medium. Both acetate and yeast extract were nec...
متن کامل